Square of V Operator on Hilbert Space
Jump to navigation
Jump to search
Theorem
Let $\struct {\HH, \innerprod \cdot \cdot}$ be a Hilbert space over $\C$.
Let $\struct {\HH \times \HH, \innerprod \cdot \cdot_{\HH \times \HH} }$ be the Hilbert space direct sum of $\HH$ with itself.
Define $V : \HH \times \HH \to \HH \times \HH$ by:
- $\map V {x, y} = \tuple {-y, x}$
for each $\tuple {x, y} \in \HH \times \HH$.
Then $V^2 = -I$.
Proof
For each $x, y \in \HH$ we have:
\(\ds \map {V^2} {x, y}\) | \(=\) | \(\ds \map V {-y, x}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \tuple {-x, -y}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds -\tuple {x, y}\) |
$\blacksquare$
Sources
- 1991: Walter Rudin: Functional Analysis (2nd ed.) ... (previous) ... (next): $13.7$: Graphs