Squeeze Theorem/Functions/Proof 3
< Squeeze Theorem | Functions
Jump to navigation
Jump to search
Theorem
Let $a$ be a point on an open real interval $I$.
Let $f$, $g$ and $h$ be real functions defined at all points of $I$ except for possibly at point $a$.
Suppose that:
- $\forall x \ne a \in I: \map g x \le \map f x \le \map h x$
- $\ds \lim_{x \mathop \to a} \map g x = \lim_{x \mathop \to a} \map h x = L$
Then:
- $\ds \lim_{x \mathop \to a} \ \map f x = L$
Proof
By the definition of the limit of a real function, we have to prove that:
- $\forall \epsilon \in \R_{>0}: \exists \delta \in \R_{>0}: \paren {\size {x - a} < \delta \implies \size {\map f x - L} < \epsilon}$
Let $\epsilon \in \R_{>0}$ be given.
We have:
- $\ds \lim_{x \mathop \to a} \map g x = \lim_{x \mathop \to a} \map h x$
Hence by Sum Rule for Limits of Real Functions:
- $\ds \lim_{x \mathop \to a} \paren {\map h x - \map g x} = 0$
By the definition of the limit of a real function:
- $(1): \quad \forall \epsilon' \in \R_{>0}: \exists \delta \in \R_{>0}: \paren {\size {x - a} < \delta \implies \size {\map h x - L} < \epsilon'}$
- $(2): \quad \forall \epsilon' \in \R_{>0}: \exists \delta \in \R_{>0}: \paren {\size {x - a} < \delta \implies \size {\map g x - L} < \epsilon'}$
- $(3): \quad \forall \epsilon' \in \R_{>0}: \exists \delta \in \R_{>0}: \paren {\size {x - a} < \delta \implies \size {\map h x - \map g x} < \epsilon'}$
Take $\epsilon' = \dfrac {\epsilon} 3$ in $(1)$, $(2)$, $(3)$.
Then there exists $\delta_1, \delta_2, \delta_3$ that satisfies $(1)$, $(2)$, $(3)$ with $\epsilon' = \dfrac \epsilon 3$.
Take $\delta = \min \set {\delta_1, \delta_2, \delta_3}$.
Then:
\(\ds \size {x - a}\) | \(<\) | \(\ds \delta\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \size {\map h x - L}\) | \(<\) | \(\ds \frac {\epsilon} 3\) | |||||||||||
\(\, \ds \land \, \) | \(\ds \size {\map g x - L}\) | \(<\) | \(\ds \frac {\epsilon} 3\) | |||||||||||
\(\, \ds \land \, \) | \(\ds \size {\map h x - \map g x}\) | \(<\) | \(\ds \frac {\epsilon} 3\) |
So, if $\size {x - a} < \delta$:
\(\ds \size {\map f x - L}\) | \(=\) | \(\ds \size {\map f x - \map g x + \map h x - L + \map g x - \map h x}\) | ||||||||||||
\(\ds \) | \(\le\) | \(\ds \size {\map f x - \map g x} + \size {\map h x - L} + \size {\map h x - \map g x}\) | ||||||||||||
\(\ds \) | \(\le\) | \(\ds \size {\map h x - \map g x} + \size {\map h x - L} + \size {\map h x - \map g x}\) | ||||||||||||
\(\ds \) | \(\le\) | \(\ds \frac {\epsilon} 3 + \frac {\epsilon} 3 + \frac {\epsilon} 3\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \epsilon\) |
$\blacksquare$
![]() | This article, or a section of it, needs explaining. In particular: Specify where $\size {\map f x - \map g x} \le \size {\map h x - \map g x}$ follows from. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by explaining it. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Explain}} from the code. |