Stabilizer of Element after Group Action
Jump to navigation
Jump to search
Theorem
Let $\struct {G, \circ}$ be a group.
Let $S$ be a set.
Let $*_S: G \times S \to S$ be a group action.
Let $x \in S, a \in G$.
Then:
- $\Stab {a * x} = a^{-1} \circ \Stab x \circ a$
Proof
\(\ds \Stab {a * x}\) | \(=\) | \(\ds \set {g \in G: g * \paren {a * x} = a * x}\) | Definition of Stabilizer | |||||||||||
\(\ds \) | \(=\) | \(\ds \set {g \in G: \paren {g \circ a} * x = a * x}\) | Group Action Axiom $\text {GA} 2$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \set {g \in G: a^{-1} * \paren {g \circ a} * x = a^{-1} * \paren {a * x} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \set {g \in G: \paren {a^{-1} \circ \paren {g \circ a} } * x = \paren {a^{-1} \circ a} * x}\) | Group Action Axiom $\text {GA} 2$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \set {g \in G: \paren {a^{-1} \circ g \circ a} * x = x}\) | Group Axiom $\text G 1$: Associativity and Group Axiom $\text G 3$: Existence of Inverse Element | |||||||||||
\(\ds \) | \(=\) | \(\ds a^{-1} \circ \set {g \in G: g * x = x} \circ a\) | Definition of Subset Product | |||||||||||
\(\ds \) | \(=\) | \(\ds a^{-1} \circ \Stab x \circ a\) | Definition of Stabilizer |
$\blacksquare$
Sources
- 1996: John F. Humphreys: A Course in Group Theory ... (previous) ... (next): Chapter $10$: The Orbit-Stabiliser Theorem: Exercise $2$