Stirling's Formula/Refinement/Proof 1
Jump to navigation
Jump to search
Theorem
A refinement of Stirling's Formula is:
- $n! = \sqrt {2 \pi n} \paren {\dfrac n e}^n \paren {1 + \dfrac 1 {12 n} + \map \OO {\dfrac 1 {n^2} } }$
Proof
Let:
- $\ds \map f n := \dfrac {n!} {\sqrt {2 \pi n} n^n e^{-n} } - \paren {1 + \frac 1 {12 n} }$
We need to show:
- $\ds \map f n = \map \OO {\dfrac 1 {n^2} }$
Recall Limit of Error in Stirling's Formula:
- $e^{1 / \paren {12 n + 1} } \le \dfrac {n!} {\sqrt {2 \pi n} n^n e^{-n} } \le e^{1 / 12 n}$
Furthermore, observe:
\(\ds e^{1 / {12 n + 1} }\) | \(\ge\) | \(\ds 1 + \frac 1 {12 n + 1}\) | Exponential Function Inequality | |||||||||||
\(\ds \) | \(=\) | \(\ds 1 + \frac 1 {12 n} - \frac 1 {12 n \paren {12 n + 1} }\) | ||||||||||||
\(\ds \) | \(\ge\) | \(\ds \paren {1 + \frac 1 {12 n} } - \frac 1 {n^2}\) |
On the other hand:
\(\ds e^{1 / {12 n} }\) | \(=\) | \(\ds 1 + \frac 1 {12 n} + \frac {e^\xi}{2!} \paren {\frac 1 {12 n} }^2\) | for a $\xi \in \closedint 0 {\frac 1 {12n} }$ by Taylor's Theorem | |||||||||||
\(\ds \) | \(\le\) | \(\ds 1 + \frac 1 {12 n} + \frac {e^1} {2!} \paren {\frac 1 {12 n} }^2\) | Exponential is Strictly Increasing | |||||||||||
\(\ds \) | \(\le\) | \(\ds \paren {1 + \frac 1 {12 n} } + \frac 1 {n^2}\) | $e=2.71\ldots$ |
Altogether we have:
- $-\dfrac 1 {n^2} \le e^{1 / \paren {12 n + 1} } - \paren {1 + \dfrac 1 {12 n} } \le \map f n \le e^{1 / \paren {12 n} } - \paren {1 + \dfrac 1 {12 n} } \le \dfrac 1 {n^2}$
Therefore:
- $ \size {\map f n} \le \dfrac 1 {n^2}$
$\blacksquare$
Examples
Factorial of $8$
The factorial of $8$ is given by the refinement to Stirling's formula as:
- $8! \approx 40 \, 318$
which shows an error of about $0.005 \%$.
Source of Name
This entry was named for James Stirling.