Stirling Number of the Second Kind of 0

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds {0 \brace n} = \delta_{0 n}$

where:

$\ds {0 \brace n}$ denotes a Stirling number of the second kind
$\delta_{0 n}$ denotes the Kronecker delta.


Proof

By definition of Stirling numbers of the second kind:

$\ds x^{\underline 0} = \sum_k {0 \brace k} x^k$


Thus we have:

\(\ds x^0\) \(=\) \(\ds 1\) Definition of Integer Power
\(\ds \) \(=\) \(\ds x^{\underline 0}\) Number to Power of Zero Falling is One


Thus, in the expression:

$\ds x^0 = \sum_k {0 \brace k} x^{\underline k}$

we have:

$\ds {0 \brace 0} = 1$

and for all $k \in \Z_{>0}$:

$\ds {0 \brace k} = 0$

That is:

$\ds {0 \brace k} = \delta_{0 k}$

$\blacksquare$


Also see


Sources