Strict Upper Bound for Composition of Ackermann-Péter Functions

From ProofWiki
Jump to navigation Jump to search

Theorem

For all $x, y, z \in \N$:

$\map A {x + y + 2, z} > \map A {x, \map A {y, z}}$

where $A$ is the Ackermann-Péter function.


Proof

We have:

$x + y + 1 > y$

giving us:

$\paren 1 \quad \map A {x + y + 1, z} > \map A {y, z}$

by Ackermann-Péter Function is Strictly Increasing on First Argument.


Therefore:

\(\ds \map A {x + y + 2, z}\) \(\ge\) \(\ds \map A {x + y + 1, z + 1}\) Increasing Second Argument of Ackermann-Péter Function is Not Greater than Increasing First Argument
\(\ds \) \(=\) \(\ds \map A {x + y, \map A {x + y + 1, z} }\) Definition of Ackermann-Péter Function
\(\ds \) \(>\) \(\ds \map A {x + y, \map A {y, z} }\) Ackermann-Péter Function is Strictly Increasing on Second Argument and $\paren 1$
\(\ds \) \(\ge\) \(\ds \map A {x, \map A {y, z} }\) Ackermann-Péter Function is Strictly Increasing on First Argument

$\blacksquare$