# Subgroup Action is Group Action It has been suggested that this page or section be merged into Group Action on Subgroup by Left Regular Representation. (Discuss)

## Theorem

Let $\struct {G, \circ}$ be a group.

Let $\struct {H, \circ}$ be a subgroup of $G$.

Let $*: H \times G \to G$ be the subgroup action defined for all $h \in H, g \in G$ as:

$\forall h \in H, g \in G: h * g := h \circ g$

Then $*$ is a group action.

## Proof

Let $g \in G$.

First we note that since $G$ is closed, and $h \circ g \in G$, it follows that $h * g \in G$.

Next we note:

$e * g = e \circ g = g$

and so Group Action Axiom $\text {GA} 2$ is satisfied.

Now let $h_1, h_2 \in G$.

We have:

 $\ds \paren {h_1 \circ h_2} * g$ $=$ $\ds \paren {h_1 \circ h_2} \circ g$ Definition of $*$ $\ds$ $=$ $\ds h_1 \circ \paren {h_2 \circ g}$ Group Axiom $\text G 1$: Associativity $\ds$ $=$ $\ds h_1 * \paren {h_2 * g}$ Definition of $*$

and so Group Action Axiom $\text {GA} 1$ is satisfied.

Hence the result.

$\blacksquare$