Subset Intersection Set Difference is Empty Iff Subset of Second Set

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $S$ and $T$ be sets.

Let $A \subseteq S$.


Then:

$A \cap S \setminus T = \O$ if and only if $A \subseteq T$

Proof

We have:

\(\ds A \cap \paren {S \setminus T}\) \(=\) \(\ds \paren {A \cap S} \setminus T\) Intersection with Set Difference is Set Difference with Intersection
\(\ds \) \(=\) \(\ds A \setminus T\) Intersection with Subset is Subset


Then:

\(\ds A \cap \paren{S \setminus T}\) \(=\) \(\ds \O\)
\(\ds \leadstoandfrom \ \ \) \(\ds A \setminus T\) \(=\) \(\ds \O\) As $A \cap \paren{S \setminus T} = A \setminus T$
\(\ds \leadstoandfrom \ \ \) \(\ds A\) \(\subseteq\) \(\ds T\) Set Difference with Superset is Empty Set

$\blacksquare$