Subset Relation is Compatible with Subset Product
Jump to navigation
Jump to search
Theorem
Let $\struct {S, \circ}$ be a magma.
Let $\struct {\powerset S, \circ_\PP}$ be the power structure of $\struct {S, \circ}$.
Then the subset relation on $S$ is compatible with $\circ_\PP$.
That is:
\(\ds \forall X, Y, Z \in \powerset S: \, \) | \(\ds X \subseteq Y\) | \(\implies\) | \(\ds \paren {X \circ_\PP Z} \subseteq \paren {Y \circ_\PP Z}\) | |||||||||||
\(\ds X \subseteq Y\) | \(\implies\) | \(\ds \paren {Z \circ_\PP X} \subseteq \paren {Z \circ_\PP Y}\) |
Corollary 1
Let $A, B, C, D \in \powerset S$.
Let $A \subseteq B$ and $C \subseteq D$.
Then:
- $A \circ_\PP C \subseteq B \circ_\PP D$
Corollary 2
Let $A, B \subseteq S$.
Let $A \subseteq B$.
Then:
\(\ds \forall x \in S: \, \) | \(\ds x \circ A\) | \(\subseteq\) | \(\ds x \circ B\) | |||||||||||
\(\ds A \circ x\) | \(\subseteq\) | \(\ds B \circ x\) |
Proof
Let $x \in X, z \in Z$.
Then:
- $x \circ z \in X \circ Z$ and $z \circ x \in Z \circ X$
Now:
- $Y \circ Z = \set {y \circ z: y \in Y, z \in Z}$
- $Z \circ Y = \set {z \circ y: y \in Y, z \in Z}$
But by the definition of a subset:
- $x \in X \implies x \in Y$
Thus:
- $x \circ z \in Y \circ Z$ and $z \circ x \in Z \circ Y$
and the result follows.
$\blacksquare$
Sources
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): Chapter $\text {II}$: New Structures from Old: $\S 9$: Compositions Induced on the Set of All Subsets
- 1967: George McCarty: Topology: An Introduction with Application to Topological Groups ... (previous) ... (next): Chapter $\text{II}$: Groups: Exercise $\text{G}$