Sum of Arctangents/Corollary

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $n \in \N_{>0}$ where $\N_{>0}$ denotes the non-zero natural numbers.

Then:

$\ds \map \arctan {\frac 1 n} + \map \arctan {\frac {n - 1} {n + 1} } = \frac \pi 4$

where $\arctan$ denotes the arctangent.


Proof

\(\ds \arctan a + \arctan b\) \(=\) \(\ds \map \arctan {\dfrac {a + b} {1 - a b} }\) Sum of Arctangents
\(\ds \leadsto \ \ \) \(\ds \map \arctan {\dfrac 1 n} + \map \arctan {\dfrac {n - 1} {n + 1} }\) \(=\) \(\ds \map \arctan {\dfrac {\dfrac 1 n + \dfrac {n - 1} {n + 1} } {1 - \paren {\dfrac 1 n} \paren {\dfrac {n - 1} {n + 1} } } }\) where $a := \dfrac 1 n$ and $b := \dfrac {n - 1} {n + 1}$
\(\ds \) \(=\) \(\ds \map \arctan {\dfrac {\dfrac {\paren {n + 1 + n^2 - n} } {n \paren {n + 1} } } {\dfrac {\paren {n^2 + n - n + 1} } {n \paren {n + 1} } } }\)
\(\ds \) \(=\) \(\ds \map \arctan 1\)
\(\ds \) \(=\) \(\ds \frac \pi 4\) Arctangent of One

$\blacksquare$