Sum of Indices of Real Number/Integers
Theorem
Let $r \in \R_{> 0}$ be a positive real number.
Let $n, m \in \Z$ be integers.
Let $r^n$ be defined as $r$ to the power of $n$.
Then:
- $r^{n + m} = r^n \times r^m$
Proof
From Sum of Indices of Real Number: Positive Integers, we have that:
- $m \in \Z_{\ge 0}: \forall n \in \Z: r^{n + m} = r^n \times r^m$
It remains to be shown that:
- $\forall m \in \Z_{<0}: \forall n \in \Z: r^{n + m} = r^n \times r^m$
The proof will proceed by induction on $m$.
As $m < 0$ we have that $m = -p$ for some $p \in \Z_{> 0}$.
For all $p \in \Z_{>0}$, let $\map P p$ be the proposition:
- $\forall n \in \Z: r^{n + \paren {-p} } = r^n \times r^{-p}$
that is:
- $\forall n \in \Z: r^{n - p} = r^n \times r^{-p}$
Basis for the Induction
$\map P 1$ is true, as follows:
When $n > 0$:
\(\ds r^{n - 1} \times r\) | \(=\) | \(\ds r^n\) | Definition of Integer Power | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds r^{n - 1}\) | \(=\) | \(\ds r^n \dfrac 1 r\) | multiplying both sides by $\dfrac 1 r$ | ||||||||||
\(\ds \) | \(=\) | \(\ds r^n \times r^{-1}\) | Real Number to Negative Power: Integer |
When $n \le 0$:
\(\ds r^{n - 1}\) | \(=\) | \(\ds \dfrac {r^n} r\) | Definition of Integer Power | |||||||||||
\(\ds \) | \(=\) | \(\ds r^n \times r^{-1}\) | Real Number to Negative Power: Integer |
This is our basis for the induction.
Induction Hypothesis
Now we need to show that, if $\map P k$ is true, where $k \ge 1$, then it logically follows that $\map P {k + 1}$ is true.
So this is our induction hypothesis:
- $\forall n \in \Z: r^{n - k} = r^n \times r^{- k}$
Then we need to show:
- $\forall n \in \Z: r^{n - \paren {k + 1} } = r^n \times r^{-\paren {k + 1} }$
Induction Step
This is our induction step:
\(\ds r^n \times r^{-\paren {k + 1} }\) | \(=\) | \(\ds r^n \times \dfrac {r^{-k} } r\) | Definition of Integer Power | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {r^n \times r^{-k} } \times \dfrac 1 r\) | Real Multiplication is Associative | |||||||||||
\(\ds \) | \(=\) | \(\ds r^{n - k} \times \dfrac 1 r\) | Induction Hypothesis | |||||||||||
\(\ds \) | \(=\) | \(\ds r^{n - k} \times r^{-1}\) | Real Number to Negative Power: Integer | |||||||||||
\(\ds \) | \(=\) | \(\ds r^{n - k - 1}\) | Basis for the Induction | |||||||||||
\(\ds \) | \(=\) | \(\ds r^{n - \paren {k + 1} }\) |
So $\map P k \implies \map P {k + 1}$ and the result follows by the Principle of Mathematical Induction.
Therefore:
- $\forall n, m \in \Z: r^{n + m} = r^n \times r^m$
$\blacksquare$
Sources
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.2$: Numbers, Powers, and Logarithms: $(5)$
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.2$: Numbers, Powers, and Logarithms: Exercise $7$