Sum of Squares of Consecutive Fibonacci Numbers

From ProofWiki
Jump to navigation Jump to search

Theorem

${F_n}^2 + {F_{n + 1} }^2 = F_{2 n + 1}$

where $F_n$ denotes the $n$th Fibonacci number.


Proof

\(\ds {F_n}^2 + {F_{n + 1} }^2\) \(=\) \(\ds F_{n + 1} F_{n - 1} - \paren {-1}^n + F_{n + 2} F_n - \paren {-1}^{n + 1}\) Cassini's Identity
\(\ds \) \(=\) \(\ds F_n F_{n + 2} + F_{n - 1} F_{n + 1}\)
\(\ds \) \(=\) \(\ds F_{n + n + 1}\) Honsberger's Identity
\(\ds \) \(=\) \(\ds F_{2 n + 1}\)

$\blacksquare$


Sources