Sum of Summations equals Summation of Sum
Jump to navigation
Jump to search
Theorem
Let $R: \Z \to \set {\T, \F}$ be a propositional function on the set of integers.
Let $\ds \sum_{\map R i} x_i$ denote a summation over $R$.
Let the fiber of truth of $R$ be finite.
Then:
- $\ds \sum_{\map R i} \paren {b_i + c_i} = \sum_{\map R i} b_i + \sum_{\map R i} c_i$
Infinite Sequence
Let $R: \Z \to \set {\T, \F}$ be a propositional function on the set of integers $\Z$.
Let $\ds \sum_{\map R i} x_i$ denote a summation over $R$.
Let the fiber of truth of $R$ be infinite.
Let $\ds \sum_{\map R i} b_i$ and $\ds \sum_{\map R i} c_i$ be convergent.
Then:
- $\ds \sum_{\map R i} \paren {b_i + c_i} = \sum_{\map R i} b_i + \sum_{\map R i} c_i$
Proof
Let $b_i =: a_{i 1}$ and $c_i =: a_{i 2}$.
Then:
\(\ds \sum_{\map R i} \paren {b_i + c_i}\) | \(=\) | \(\ds \sum_{\map R i} \paren {a_{i 1} + a_{i 2} }\) | Definition of $b_i$ and $c_i$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{\map R i} \paren {\sum_{j \mathop = 1}^2 a_{i j} }\) | Definition of Summation | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{j \mathop = 1}^2 \paren {\sum_{\map R i} a_{i j} }\) | Exchange of Order of Summation | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{\map R i} a_{i 1} + \sum_{\map R i} a_{i 2}\) | Definition of Summation | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{\map R i} b_i + \sum_{\map R i} c_i\) | Definition of $b_i$ and $c_i$ |
$\blacksquare$
Sources
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.3$: Sums and Products: $(8)$