Sum of nth Fibonacci Number over nth Power of 2/Proof 3

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \sum_{n \mathop = 0}^\infty \frac {F_n} {2^n} = 2$

where $F_n$ is the $n$th Fibonacci number.


Proof

\(\ds \sum_{k \mathop = 0}^{\infty} F_k z^k\) \(=\) \(\ds \dfrac z {1 - z - z^2}\) Generating Function for Fibonacci Numbers
\(\ds \leadsto \ \ \) \(\ds \sum_{k \mathop = 0}^{\infty} \frac {F_k} {2^k}\) \(=\) \(\ds \dfrac {\dfrac 1 2} {1 - \dfrac 1 2 - \paren {\dfrac 1 2}^2}\) substituting $z = \dfrac 1 2$
\(\ds \) \(=\) \(\ds \dfrac {1 / 2} {1 / 4}\)
\(\ds \) \(=\) \(\ds 2\)

$\blacksquare$