Sum over k from 1 to Infinity of Zeta of 2k Over Odd Powers of 2/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

\(\ds \sum_{k \mathop = 1}^\infty \dfrac {\map \zeta {2k} } {2^{2k - 1} }\) \(=\) \(\ds \dfrac {\map \zeta {2 } } 2 + \dfrac {\map \zeta {4 } } {2^3} + \dfrac {\map \zeta {6 } } {2^5} + \dfrac {\map \zeta {8 } } {2^7} + \cdots\)
\(\ds \) \(=\) \(\ds 1\)


Proof

\(\ds \map \zeta {2k}\) \(=\) \(\ds \sum_{n \mathop = 1}^\infty \dfrac 1 {n^{2 k} }\) Definition of Riemann Zeta Function
\(\ds \leadsto \ \ \) \(\ds \sum_{k \mathop = 1}^\infty \dfrac {\map \zeta {2k} } {2^{2k - 1} }\) \(=\) \(\ds \sum_{k \mathop = 1}^\infty \dfrac 2 {\paren 2^{2 k} } \sum_{n \mathop = 1}^\infty \dfrac 1 {n^{2 k} }\) summing both sides as appropriate
\(\ds \) \(=\) \(\ds \sum_{k \mathop = 1}^\infty \sum_{n \mathop = 1}^\infty \dfrac 2 {\paren {2}^{2 k} \paren n^{2 k} }\) Tonelli's Theorem: Corollary
\(\ds \) \(=\) \(\ds 2 \sum_{k \mathop = 1}^\infty \sum_{n \mathop = 1}^\infty \dfrac 1 {\paren {4 n^2}^k }\) moving the $2$ outside
\(\ds \) \(=\) \(\ds 2 \sum_{n \mathop = 1}^\infty \dfrac {\dfrac 1 {\paren {4 n^2} } } {\paren {1 - \dfrac 1 {\paren {4 n^2} } } }\) Sum of Infinite Geometric Sequence: Corollary $1$
\(\ds \) \(=\) \(\ds 2 \sum_{n \mathop = 1}^\infty \dfrac {\dfrac 1 {\paren {4 n^2} } } {\paren {1 - \dfrac 1 {\paren {4 n^2} } } } \times \dfrac {4 n^2} {4 n^2}\) multiplying by $1$
\(\ds \) \(=\) \(\ds 2 \sum_{n \mathop = 1}^\infty \dfrac 1 {4 n^2 - 1 }\)
\(\ds \) \(=\) \(\ds 2 \sum_{n \mathop = 1}^\infty \dfrac 1 2 \paren {\dfrac 1 {2 n - 1 } - \dfrac 1 {2 n + 1 } }\) Definition of Partial Fractions Expansion
\(\ds \) \(=\) \(\ds \sum_{n \mathop = 1}^\infty \paren {\dfrac 1 {2 n - 1 } - \dfrac 1 {2 n + 1 } }\) Definition of Telescoping Series
\(\ds \) \(=\) \(\ds \paren {1 - \dfrac 1 3} + \paren {\dfrac 1 3 - \dfrac 1 5} + \paren {\dfrac 1 5 - \dfrac 1 7} + \paren {\dfrac 1 7 - \dfrac 1 9} + \cdots\)
\(\ds \) \(=\) \(\ds 1\)


Hence:

\(\ds \sum_{k \mathop = 1}^\infty \dfrac {\map \zeta {2k} } {2^{2k - 1} }\) \(=\) \(\ds 1\)

$\blacksquare$