Sum over k from 1 to Infinity of Zeta of 2k Over Odd Powers of 2/Proof 3

From ProofWiki
Jump to navigation Jump to search

Theorem

\(\ds \sum_{k \mathop = 1}^\infty \dfrac {\map \zeta {2k} } {2^{2k - 1} }\) \(=\) \(\ds \dfrac {\map \zeta {2 } } 2 + \dfrac {\map \zeta {4 } } {2^3} + \dfrac {\map \zeta {6 } } {2^5} + \dfrac {\map \zeta {8 } } {2^7} + \cdots\)
\(\ds \) \(=\) \(\ds 1\)


Proof

From Laurent Series Expansion for Cotangent Function, we have:

$\ds \pi \cot \pi z = \dfrac 1 z - 2 \sum_{k \mathop = 1}^\infty \map \zeta {2 k} z^{2 k - 1}$

Setting $z = \dfrac 1 2$:

\(\ds \pi \map \cot {\dfrac \pi 2}\) \(=\) \(\ds 2 - 2 \sum_{k \mathop = 1}^\infty \dfrac {\map \zeta {2k} } {2^{2k - 1} }\) Laurent Series Expansion for Cotangent Function setting $z = \dfrac 1 2$
\(\ds \leadsto \ \ \) \(\ds 0\) \(=\) \(\ds 2 - 2 \sum_{k \mathop = 1}^\infty \dfrac {\map \zeta {2k} } {2^{2k - 1} }\) Cotangent of Right Angle
\(\ds \leadsto \ \ \) \(\ds 2 \sum_{k \mathop = 1}^\infty \dfrac {\map \zeta {2k} } {2^{2k - 1} }\) \(=\) \(\ds 2\)
\(\ds \) \(=\) \(\ds 1\) dividing both sides by $2$


Hence:

\(\ds \sum_{k \mathop = 1}^\infty \dfrac {\map \zeta {2k} } {2^{2k - 1} }\) \(=\) \(\ds 1\)

$\blacksquare$