# Summation is Linear

Jump to navigation
Jump to search

## Theorem

Let $\left({x_1, \ldots, x_n}\right)$ and $\left({y_1, \ldots, y_n}\right)$ be finite sequences of numbers of equal length.

Let $\lambda$ be a number.

Then:

### Sum of Summations

- $\displaystyle \sum_{i \mathop = 1}^n x_i + \sum_{i \mathop = 1}^n y_i = \sum_{i \mathop = 1}^n \paren {x_i + y_i}$

### Scaling of Summations

- $\displaystyle \lambda \sum_{i \mathop = 1}^n x_i = \sum_{i \mathop = 1}^n \lambda x_i$