Supremum of Continuous Bounded Real-Valued Function on Everywhere Dense Subset
Jump to navigation
Jump to search
Theorem
Let $\struct {X, \tau}$ be a topological space.
Let $\DD$ be an everywhere dense subset of $\struct {X, \tau}$.
Let $f : X \to \R$ be a continuous bounded real-valued function.
Then:
- $\ds \sup_{x \mathop \in \DD} \map f x = \sup_{x \mathop \in X} \map f x$
Proof
Since $\DD \subseteq X$ we have:
- $\ds \sup_{x \mathop \in \DD} \map f x \le \sup_{x \mathop \in X} \map f x$
Conversely, from the definition of supremum, for each $\epsilon > 0$ there exists $y \in X$ such that:
- $\ds \sup_{x \mathop \in X} \map f x - \frac \epsilon 2 \le \map f y \le \sup_{x \mathop \in X} \map f x$
Since $f$ is continuous, there exists an open set $U$ such that:
- $\ds \size {\map f y - \map f w} < \frac \epsilon 2$
hence:
- $\ds \map f y - \frac \epsilon 2 < \map f w < \map f y + \frac \epsilon 2$
for $w \in U$.
Since $\DD$ is everywhere dense, we have $\DD \cap U \ne \O$.
Picking $w \in \DD \cap U$, we have:
- $\ds \map f w > \map f y - \frac \epsilon 2 \ge \sup_{x \mathop \in X} \map f x - \epsilon$
while:
- $\ds \map f w \le \sup_{x \mathop \in \DD} \map f x$
since $w \in \DD$.
Hence for each $\epsilon > 0$ we have:
- $\ds \sup_{x \mathop \in X} \map f x \le \sup_{x \mathop \in \DD} \map f x + \epsilon$
Taking $\epsilon \to 0^+$, we then obtain:
- $\ds \sup_{x \mathop \in X} \map f x \le \sup_{x \mathop \in \DD} \map f x$
Hence we have:
- $\ds \sup_{x \mathop \in \DD} \map f x = \sup_{x \mathop \in X} \map f x$
$\blacksquare$