Supremum of Subset Product in Ordered Group

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {G, \circ, \preceq}$ be an ordered group.

Suppose that subsets $A$ and $B$ of $G$ admit suprema in $G$.


Then:

$\sup \paren {A \circ_\PP B} = \sup A \circ \sup B$

where $\circ_\PP$ denotes subset product.


Proof

Let $a \in A$, $b \in B$.

Then:

\(\ds a \circ b\) \(\preceq\) \(\ds \sup A \circ b\) Definition of Supremum of Set
\(\ds \) \(\preceq\) \(\ds \sup A \circ \sup B\) Definition of Supremum of Set

Hence $\sup A \circ \sup B$ is an upper bound for $A \circ_\PP B$.


Suppose that $u$ is an upper bound for $A \circ_\PP B$.

Then:

\(\ds \forall b \in B: \forall a \in A: \, \) \(\ds a \circ b\) \(\preceq\) \(\ds u\)
\(\ds \leadsto \ \ \) \(\ds \forall b \in B: \forall a \in A: \, \) \(\ds a\) \(\preceq\) \(\ds u \circ b^{-1}\)
\(\ds \leadsto \ \ \) \(\ds \forall b \in B: \, \) \(\ds \sup A\) \(\preceq\) \(\ds u \circ b^{-1}\) Definition of Supremum of Set
\(\ds \leadsto \ \ \) \(\ds \forall b \in B: \, \) \(\ds b\) \(\preceq\) \(\ds \paren {\sup A}^{-1} \circ u\)
\(\ds \leadsto \ \ \) \(\ds \sup B\) \(\preceq\) \(\ds \paren {\sup A}^{-1} \circ u\) Definition of Supremum of Set
\(\ds \leadsto \ \ \) \(\ds \sup A \circ \sup B\) \(\preceq\) \(\ds u\)


Therefore:

$\sup \paren {A \circ_\PP B} = \sup A \circ \sup B$

$\blacksquare$


Also see