From ProofWiki
Jump to navigation Jump to search

Previous  ... Next


The $13$th letter of the Greek alphabet.

Minuscule: $\nu$
Majuscule: $\Nu$

The $\LaTeX$ code for \(\nu\) is \nu .

The $\LaTeX$ code for \(\Nu\) is \Nu .

Nu Function

$\map \nu n$

The $\nu$ (nu) function is the function $\nu: \Z_{>0} \to \Z_{>0}$ is defined as:

$\forall n \in \Z_{>0}: \map \nu n = $ the number of types of group of order $n$

The $\LaTeX$ code for \(\map \nu n\) is \map \nu n .

Minimal Negation Operator


Let $\Bbb B$ be a Boolean domain:

$\Bbb B = \set {\F, \T}$

The minimal negation operator $\nu$ is a multiary operator:

$\nu_k: \Bbb B^k \to \Bbb B$


$k \in \N$ is a natural number
$\nu_k$ is a boolean function defined as:
$\map {\nu_k} {x_1, x_2, \ldots, x_k} = \begin {cases}

\T & : \exists! x_j \in \set {x_1, x_2, \ldots, x_k}: x_j = \F \\ \F & : \text {otherwise} \end{cases}$

That is:

$\map {\nu_k} {x_1, x_2, \ldots, x_k}$ is true if and only if exactly one of its arguments is false.

The $\LaTeX$ code for \(\nu_k\) is \nu_k .

Kinematic Viscosity


The usual symbol used to denote the kinematic viscosity of a fluid is $\nu$.

Its $\LaTeX$ code is \nu .

Previous  ... Next