Symbols:Greek/Phi/Euler Phi Function

From ProofWiki
Jump to navigation Jump to search

Euler Phi Function

$\map \phi n$

Let $n \in \Z_{>0}$, that is, a strictly positive integer.

The Euler $\phi$ (phi) function is the arithmetic function $\phi: \Z_{>0} \to \Z_{>0}$ defined as:

$\map \phi n = $ the number of strictly positive integers less than or equal to $n$ which are prime to $n$

That is:

$\map \phi n = \card {S_n}: S_n = \set {k: 1 \le k \le n, k \perp n}$

The $\LaTeX$ code for \(\map \phi n\) is \map \phi n .