Symbols:Linear Algebra/Hermitian Conjugate

From ProofWiki
Jump to navigation Jump to search

Hermitian Conjugate

$\mathbf A^\dagger$


Symbol used for the Hermitian conjugate of a matrix.


Let $\mathbf A = \sqbrk \alpha_{m n}$ be an $m \times n$ matrix over the complex numbers $\C$.


Then the Hermitian conjugate of $\mathbf A$ is defined and denoted:

$\mathbf A^\dagger = \sqbrk \beta_{n m}: \forall i \in \set {1, 2, \ldots, n}, j \in \set {1, 2, \ldots, m}: \beta_{i j} = \overline {\alpha_{j i} }$

where $\overline {\alpha_{j i} }$ denotes the complex conjugate of $\alpha_{j i}$.


That is, $\mathbf A^\dagger$ is the transpose of the complex conjugate of $\mathbf A$.


The $\LaTeX$ code for \(\mathbf A^\dagger\) is \mathbf A^\dagger .


Variant

$\mathbf A^*$


A variant symbol used for the Hermitian conjugate of a matrix.


The $\LaTeX$ code for \(\mathbf A^*\) is \mathbf A^* .


Sources