Symbols:Linear Algebra
Symbols used in Linear Algebra
Determinant
- $\begin {vmatrix} a & b \\ c & d \end {vmatrix}$
$\begin {vmatrix} a & b \\ c & d \end {vmatrix}$ denotes a determinant.
The $\LaTeX$ code for \(\begin {vmatrix} a & b \\ c & d \end {vmatrix}\) is \begin {vmatrix} a & b \\ c & d \end {vmatrix}
.
Matrix
- $\begin {pmatrix} a & b \\ c & d \end {pmatrix}$
$\begin {pmatrix} a & b \\ c & d \end {pmatrix}$ denotes a matrix.
The $\LaTeX$ code for \(\begin {pmatrix} a & b \\ c & d \end {pmatrix}\) is \begin {pmatrix} a & b \\ c & d \end {pmatrix}
.
Inverse Matrix
- $\mathbf A^{-1}$
$\mathbf A^{-1}$ denotes the inverse of the invertible matrix $\mathbf A$.
The $\LaTeX$ code for \(\mathbf A^{-1}\) is \mathbf A^{-1}
.
Complex Conjugate
- $\overline {\mathbf A}$
Symbol used for the complex conjugate of a matrix.
Let $\mathbf A = \sqbrk \alpha_{m n}$ be an $m \times n$ matrix over the complex numbers $\C$.
Let $\overline {\mathbf A}$ denote the matrix formed from $\mathbf A$ by replacing each entry of $\mathbf A$ with its complex conjugate:
- $\overline {\mathbf A} = \sqbrk \beta_{m n}: \forall i \in \set {1, 2, \ldots, m}, j \in \set {1, 2, \ldots, n}: \beta_{i j} = \overline {\alpha_{i j} }$
where $\overline {\alpha_{i j} }$ denotes the complex conjugate of $\alpha_{j i}$.
Then $\overline {\mathbf A}$ is the complex conjugate of $\mathbf A$.
The $\LaTeX$ code for \(\overline {\mathbf A}\) is \overline {\mathbf A}
.
Hermitian Conjugate
- $\mathbf A^\dagger$
Symbol used for the Hermitian conjugate of a matrix.
Let $\mathbf A = \sqbrk \alpha_{m n}$ be an $m \times n$ matrix over the complex numbers $\C$.
Then the Hermitian conjugate of $\mathbf A$ is defined and denoted:
- $\mathbf A^\dagger = \sqbrk \beta_{n m}: \forall i \in \set {1, 2, \ldots, n}, j \in \set {1, 2, \ldots, m}: \beta_{i j} = \overline {\alpha_{j i} }$
where $\overline {\alpha_{j i} }$ denotes the complex conjugate of $\alpha_{j i}$.
That is, $\mathbf A^\dagger$ is the transpose of the complex conjugate of $\mathbf A$.
The $\LaTeX$ code for \(\mathbf A^\dagger\) is \mathbf A^\dagger
.