Symmetric Group on 3 Letters/Cayley Table

From ProofWiki
Jump to navigation Jump to search

Cayley Table of Symmetric Group on $3$ Letters

The Cayley table of the symmetric group on $3$ letters can be presented in cycle notation as:

$\begin{array}{c|cccccc}\circ & e & (123) & (132) & (23) & (13) & (12) \\ \hline e & e & (123) & (132) & (23) & (13) & (12) \\ (123) & (123) & (132) & e & (13) & (12) & (23) \\ (132) & (132) & e & (123) & (12) & (23) & (13) \\ (23) & (23) & (12) & (13) & e & (132) & (123) \\ (13) & (13) & (23) & (12) & (123) & e & (132) \\ (12) & (12) & (13) & (23) & (132) & (123) & e \\ \end{array}$


It can also often be seen presented as:

$\begin{array}{c|cccccc} & e & p & q & r & s & t \\ \hline e & e & p & q & r & s & t \\ p & p & q & e & s & t & r \\ q & q & e & p & t & r & s \\ r & r & t & s & e & q & p \\ s & s & r & t & p & e & q \\ t & t & s & r & q & p & e \\ \end{array}$


Sources