Symmetric Group on 3 Letters/Cayley Table
Jump to navigation
Jump to search
Cayley Table of Symmetric Group on $3$ Letters
The Cayley table of the symmetric group on $3$ letters can be presented in cycle notation as:
- $\begin{array}{c|cccccc}\circ & e & (123) & (132) & (23) & (13) & (12) \\ \hline e & e & (123) & (132) & (23) & (13) & (12) \\ (123) & (123) & (132) & e & (13) & (12) & (23) \\ (132) & (132) & e & (123) & (12) & (23) & (13) \\ (23) & (23) & (12) & (13) & e & (132) & (123) \\ (13) & (13) & (23) & (12) & (123) & e & (132) \\ (12) & (12) & (13) & (23) & (132) & (123) & e \\ \end{array}$
It can also often be seen presented as:
- $\begin{array}{c|cccccc} & e & p & q & r & s & t \\ \hline e & e & p & q & r & s & t \\ p & p & q & e & s & t & r \\ q & q & e & p & t & r & s \\ r & r & t & s & e & q & p \\ s & s & r & t & p & e & q \\ t & t & s & r & q & p & e \\ \end{array}$
Sources
- 1965: J.A. Green: Sets and Groups ... (previous) ... (next): Tables: $1$. Symmetric Group $\map S 3$
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): Chapter $\text {II}$: New Structures from Old: $\S 8$: Compositions Induced on Subsets: Exercise $8.6$
- 1967: George McCarty: Topology: An Introduction with Application to Topological Groups ... (previous) ... (next): Chapter $\text{II}$: Groups: Exercise $\text{A}$
- 1996: John F. Humphreys: A Course in Group Theory ... (previous) ... (next): Chapter $2$: Maps and relations on sets: Example $2.19$