System of Linear Equations as Continuous Linear Transformation
Jump to navigation
Jump to search
![]() | It has been suggested that this page be renamed. In particular: This appears to be a specific instance of a more general result. Hence we would want to rename this to be an example of the general case, which would then be given then name this one has To discuss this page in more detail, feel free to use the talk page. |
Theorem
Let $x_1, x_2 \in \R$ be real numbers.
Consider the following system of simultaneous linear equations $\paren S$:
\(\ds x_1\) | \(=\) | \(\ds \frac 1 2 x_1 + \frac 1 3 x_2 + 1\) | ||||||||||||
\(\ds x_2\) | \(=\) | \(\ds \frac 1 3 x_1 + \frac 1 4 x_2 + 2\) |
Let $\norm {\, \cdot \,}_2$ be the Euclidean norm.
Let $\norm {\, \cdot \,}$ be the supremum operator norm.
Let $I$ be the $2 \times 2$ identity matrix.
Then:
- $S$ is expressible as $\paren {I - K} x = y$ where $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, $y = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $K = \begin{pmatrix} \frac 1 2 & \frac 1 3 \\ \frac 1 3 & \frac 1 4 \end{pmatrix}$;
- $\norm K < 1$;
![]() | Work In Progress In particular: There is also a convergence rate estimation subproblem, but it's numerical. I would like to write an analytical analogue, but more theory is needed before I can do that. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by completing it. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{WIP}} from the code. |
Proof
$\paren S$ is expressible as $\paren {I - K} x = y$
We have that:
\(\ds x_1\) | \(=\) | \(\ds \frac 1 2 x_1 + \frac 1 3 x_2 + 1\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac 1 2 x_1 - \frac 1 3 x_2\) | \(=\) | \(\ds 1\) |
Furthermore:
\(\ds x_1\) | \(=\) | \(\ds \frac 1 2 x_1 + \frac 1 3 x_2 + 1\) | ||||||||||||
\(\ds x_2\) | \(=\) | \(\ds \frac 1 3 x_1 + \frac 1 4 x_2 + 2\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds - \frac 1 3 x_1 + \frac 3 4 x_2\) | \(=\) | \(\ds 2\) |
Hence, $\paren S$ can be rewritten as:
\(\ds \frac 1 2 x_1 - \frac 1 3 x_2\) | \(=\) | \(\ds 1\) | ||||||||||||
\(\ds - \frac 1 3 x_1 + \frac 3 4 x_2\) | \(=\) | \(\ds 2\) |
Moreover:
\(\ds I - K\) | \(=\) | \(\ds \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} \frac 1 2 & \frac 1 3 \\ \frac 1 3 & \frac 1 4 \end{pmatrix}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \begin{pmatrix} \frac 1 2 & -\frac 1 3 \\ -\frac 1 3 & \frac 3 4 \end{pmatrix}\) |
By a simple inspection it is evident that $\paren S$ is expressible as $\paren {I - K} x = y$.
$\Box$
$\norm K < 1$
We have that:
\(\ds \norm {K x}_2^2\) | \(=\) | \(\ds \paren {\frac 1 2 x_1 + \frac 1 3 x_2}^2 + \paren {\frac 1 3 x_1 + \frac 1 4 x_2}^2\) | ||||||||||||
\(\ds \) | \(\le\) | \(\ds \paren {\frac 1 4 + \frac 1 9} \cdot \paren {x_1^2 + x_2^2} + \paren {\frac 1 9 + \frac 1 {16} } \cdot \paren {x_1^2 + x_2^2}\) | Cauchy-Schwarz Inequality | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\frac 1 4 + \frac 1 9 + \frac 1 9 + \frac 1 {16} } \norm x_2^2\) | Definition of Euclidean Norm |
Hence:
\(\ds \norm K\) | \(=\) | \(\ds \sup_{\norm x_2 \mathop \le \mathop 1} \sqrt{ \paren {\frac 1 2 x_1 + \frac 1 3 x_2}^2 + \paren {\frac 1 3 x_1 + \frac 1 4 x_2}^2 }\) | Definition of Supremum Operator Norm | |||||||||||
\(\ds \) | \(\le\) | \(\ds \sup_{\norm x_2 \mathop \le \mathop 1} \sqrt{ \paren {\frac 1 4 + \frac 1 9 + \frac 1 9 + \frac 1 {16} } \norm x_2^2 }\) | ||||||||||||
\(\ds \) | \(\le\) | \(\ds \sqrt {\frac 1 4 + \frac 1 9 + \frac 1 9 + \frac 1 {16} }\) | ||||||||||||
\(\ds \) | \(\le\) | \(\ds \sqrt {\frac {1 + 16 + 16 + 9} {9 \cdot 16} }\) | ||||||||||||
\(\ds \) | \(<\) | \(\ds \sqrt {\frac {4 \cdot 16} {9 \cdot 16} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sqrt {\frac 4 9 }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 2 3\) | ||||||||||||
\(\ds \) | \(<\) | \(\ds 1\) |
$\Box$
$S$ admits a unique solution
By Neumann series theorem, $\paren {I - K}^{-1}$ exists in $\map {CL} {\R^2}$.
Hence:
\(\ds \forall x \in \R^2: \, \) | \(\ds \paren {I - K} x\) | \(=\) | \(\ds y\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {I - K}^{-1} \paren {I - K} x\) | \(=\) | \(\ds \paren {I - K}^{-1} y\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds x\) | \(=\) | \(\ds \paren {I - K}^{-1} y\) | Definition of Invertible Continuous Linear Operator |
By Inverse of Nonsingular 2 x 2 Real Square Matrix:
\(\ds \paren {I - K}^{-1}\) | \(=\) | \(\ds \frac 1 {\frac 1 2 \cdot \frac 3 4 - \paren {- \frac 1 3} \cdot {- \frac 1 3} } \begin{pmatrix} \frac 3 4 & \frac 1 3 \\ \frac 1 3 & \frac 1 2 \end{pmatrix}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {72}{19} \begin{pmatrix} \frac 3 4 & \frac 1 3 \\ \frac 1 3 & \frac 1 2 \end{pmatrix}\) |
Therefore:
\(\ds x\) | \(=\) | \(\ds \frac {72}{19} \begin{pmatrix} \frac 3 4 & \frac 1 3 \\ \frac 1 3 & \frac 1 2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {72}{19} \begin{pmatrix} \frac 3 4 \cdot 1 + \frac 1 3 \cdot 2 \\ \frac 1 3 \cdot 1 + \frac 1 2 \cdot 2 \end{pmatrix}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {72}{19} \begin{pmatrix} \frac {17} {12} \\ \frac 4 3 \end{pmatrix}\) |
Sources
- 2017: Amol Sasane: A Friendly Approach to Functional Analysis ... (previous) ... (next): Chapter $\S 2.4$: Composition of continuous linear transformations