Tangent of 30 Degrees
Jump to navigation
Jump to search
Theorem
- $\tan 30 \degrees = \tan \dfrac \pi 6 = \dfrac {\sqrt 3} 3$
where $\tan$ denotes tangent.
Proof
\(\ds \tan 30 \degrees\) | \(=\) | \(\ds \frac {\sin 30 \degrees} {\cos 30 \degrees}\) | Tangent is Sine divided by Cosine | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\frac 1 2} {\frac {\sqrt 3} 2}\) | Sine of $30 \degrees$ and Cosine of $30 \degrees$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {\sqrt 3}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\sqrt 3} 3\) | multiplying top and bottom by $\sqrt 3$ |
$\blacksquare$
Also presented as
Some sources present the tangent of $30 \degrees$ as:
- $\tan 30 \degrees = \tan \dfrac \pi 6 = \dfrac 1 {\sqrt 3}$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 5$: Trigonometric Functions: Exact Values for Trigonometric Functions of Various Angles
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): trigonometric function
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): trigonometric function
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): Appendix $12$: Trigonometric formulae: Trigonometric values for some special angles
- 2021: Richard Earl and James Nicholson: The Concise Oxford Dictionary of Mathematics (6th ed.) ... (previous) ... (next): Appendix $14$: Trigonometric formulae: Trigonometric values for some special angles