Taylor's Theorem/One Variable/Proof by Rolle's Theorem
Jump to navigation
Jump to search
Theorem
Let $f$ be a real function which is:
- of differentiability class $C^n$ on the closed interval $\closedint a x$
and:
- at least $n + 1$ times differentiable on the open interval $\openint a x$.
Then:
\(\ds \map f x\) | \(=\) | \(\ds \frac 1 {0!} \map f a\) | ||||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \frac 1 {1!} \paren {x - a} \map {f'} a\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \frac 1 {2!} \paren {x - a}^2 \map {f' '} a\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \cdots\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \frac 1 {n!} \paren {x - a}^n \map {f^{\paren n} } a\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds R_n\) |
where $R_n$ (sometimes denoted $E_n$) is known as the error term or remainder, and can be presented in one of $2$ forms:
- Lagrange Form
- $R_n = \dfrac {\map {f^{\paren {n + 1} } } \xi} {\paren {n + 1}!} \paren {x - a}^{n + 1}$
for some $\xi \in \openint a x$.
- Cauchy Form
- $R_n = \dfrac {\map {f^{\paren {n + 1} } } \xi \paren {x - \xi}^n} {n!} \paren {x - a}$
for some $\xi \in \openint a x$.
Proof
Let the function $g$ be defined as:
- $\map g t = \map {R_n} t - \dfrac {\paren {t - a}^{n + 1} } {\paren {x - a}^{n + 1} } \map {R_n} x$
Then:
- $\map {g^{\paren k} } a = 0$
for $k = 0, \dotsc, n$, and $\map g x = 0$.
Apply Rolle's Theorem successively to $g, g', \dotsc, g^{\paren n}$.
Then there exist:
- $\xi_1, \ldots, \xi_{n + 1}$
between $a$ and $x$ such that:
- $\map {g'} {\xi_1} = 0, \map {g' '} {\xi_2} = 0, \ldots, \map {g^{\paren {n + 1} } } {\xi_{n + 1} } = 0$
Let $\xi = \xi_{n + 1}$.
Then:
- $0 = \map {g^{\paren {n + 1} } } \xi = \map {f^{\paren {n + 1} } } \xi - \dfrac {\paren {n + 1}!} {\paren {x - a}^{n + 1} } \map {R_n} x$
and the formula for $\map {R_n} x$ follows.
$\blacksquare$
Source of Name
This entry was named for Brook Taylor.
Sources
- 1977: K.G. Binmore: Mathematical Analysis: A Straightforward Approach ... (previous) ... (next): $\S 11.10$