Trace Sigma-Algebra of Measurable Set
Jump to navigation
Jump to search
Theorem
Let $\struct {X, \Sigma}$ be a measurable space.
Let $A \in \Sigma$.
Let $\Sigma_A$ be the trace $\sigma$-algebra of $A$ in $\Sigma$.
Then:
- $\Sigma_A = \set {B \in \Sigma : B \subseteq A}$
That is, the elements of $\Sigma_A$ are precisely the $\Sigma$-measurable sets that are subsets of $A$.
Proof
Let:
- $\Sigma' = \set {B \in \Sigma : B \subseteq A}$
We first show that:
- $\Sigma_A \subseteq \Sigma'$.
Let $B \in \Sigma_A$, then there exists $S \in \Sigma$ such that:
- $B = A \cap S$
From Sigma-Algebra Closed under Finite Intersection, we have:
- $B \in \Sigma$
while, from Intersection is Subset, we have:
- $A \cap S \subseteq A$
so:
- $B \subseteq A$
giving:
- $B \in \Sigma'$
So we have:
- $\Sigma_A \subseteq \Sigma'$
by the definition of set inclusion.
Now let $B \in \Sigma'$.
From Intersection with Subset is Subset, we have:
- $B = B \cap A$
while $B \in \Sigma$, so:
- $B \in \Sigma_A$
from the definition of trace $\sigma$-algebra.
So we have:
- $\Sigma' \subseteq \Sigma_A$
by the definition of set inclusion.
So, we have:
- $\Sigma_A = \Sigma' = \set {B \in \Sigma : B \subseteq A}$
$\blacksquare$