Triangles with Integer Area and Integer Sides in Arithmetical Sequence

From ProofWiki
Jump to navigation Jump to search

Theorem

The triangles with the following sides in arithmetic sequence have integer areas:

$3, 4, 5$
$13, 14, 15$
$15, 28, 41$
$15, 26, 37$

Their areas are:

$6, 84, 126, 156$


Proof

From Heron's Formula, the area $A$ of $\triangle ABC$ is given by:

$A = \sqrt {s \paren {s - a} \paren {s - b} \paren {s - c} }$

where $s = \dfrac{a + b + c} 2$ is the semiperimeter of $\triangle ABC$.


For $3, 4, 5$:

\(\ds s\) \(=\) \(\ds \frac {3 + 4 + 5} 2\)
\(\ds \) \(=\) \(\ds 6\)
\(\ds \leadsto \ \ \) \(\ds A\) \(=\) \(\ds \sqrt {6 \paren {6 - 3} \paren {6 - 4} \paren {6 - 5} }\)
\(\ds \) \(=\) \(\ds \sqrt {6 \times 3 \times 2 \times 1}\)
\(\ds \) \(=\) \(\ds \sqrt {6 \times 6}\)
\(\ds \) \(=\) \(\ds 6\)


For $13, 14, 15$:

\(\ds s\) \(=\) \(\ds \frac {13 + 14 + 15} 2\)
\(\ds \) \(=\) \(\ds 21\)
\(\ds \leadsto \ \ \) \(\ds A\) \(=\) \(\ds \sqrt {21 \paren {21 - 13} \paren {21 - 14} \paren {21 - 15} }\)
\(\ds \) \(=\) \(\ds \sqrt {21 \times 8 \times 7 \times 6}\)
\(\ds \) \(=\) \(\ds \sqrt {\paren {3 \times 7} \times 2^3 \times 7 \times \paren {2 \times 3} }\)
\(\ds \) \(=\) \(\ds 3 \times 7 \times 2^2\)
\(\ds \) \(=\) \(\ds 84\)


For $15, 28, 41$:

\(\ds s\) \(=\) \(\ds \frac {15 + 28 + 41} 2\)
\(\ds \) \(=\) \(\ds 42\)
\(\ds \leadsto \ \ \) \(\ds A\) \(=\) \(\ds \sqrt {42 \paren {42 - 15} \paren {42 - 28} \paren {42 - 41} }\)
\(\ds \) \(=\) \(\ds \sqrt {42 \times 27 \times 14 \times 1}\)
\(\ds \) \(=\) \(\ds \sqrt {\paren {2 \times 3 \times 7} \times 3^3 \times \paren {2 \times 7} }\)
\(\ds \) \(=\) \(\ds 2 \times 3^2 \times 7\)
\(\ds \) \(=\) \(\ds 126\)


For $15, 26, 37$:

\(\ds s\) \(=\) \(\ds \frac {15 + 26 + 37} 2\)
\(\ds \) \(=\) \(\ds 39\)
\(\ds \leadsto \ \ \) \(\ds A\) \(=\) \(\ds \sqrt {39 \paren {39 - 15} \paren {39 - 26} \paren {39 - 37} }\)
\(\ds \) \(=\) \(\ds \sqrt {39 \times 24 \times 13 \times 2}\)
\(\ds \) \(=\) \(\ds \sqrt {\paren {3 \times 13} \times \paren {2^3 \times 3} \times 13 \times 2}\)
\(\ds \) \(=\) \(\ds 2^2 \times 3 \times 13\)
\(\ds \) \(=\) \(\ds 156\)



Sources