Triple of Consecutive Happy Numbers

From ProofWiki
Jump to navigation Jump to search

Theorem

The smallest triple of consecutive integers all of which are happy is:

$\left({1880, 1881, 1882}\right)$


Proof

\(\ds \) \(\) \(\ds 1880\)
\(\ds \leadsto \ \ \) \(\ds 1^2 + 8^2 + 8^2 + 0^2\) \(=\) \(\ds 1 + 64 + 64 + 0\)
\(\ds \) \(=\) \(\ds 129\)
\(\ds \leadsto \ \ \) \(\ds 1^2 + 2^2 + 9^2\) \(=\) \(\ds 1 + 4 + 81\)
\(\ds \) \(=\) \(\ds 86\)
\(\ds \leadsto \ \ \) \(\ds 8^2 + 6^2\) \(=\) \(\ds 64 + 36\)
\(\ds \) \(=\) \(\ds 100\)
\(\ds \leadsto \ \ \) \(\ds 1^2 + 0^2 + 0^2\) \(=\) \(\ds 1 + 0 + 0\)
\(\ds \) \(=\) \(\ds 1\) and so $1880$ is happy


\(\ds \) \(\) \(\ds 1881\)
\(\ds \leadsto \ \ \) \(\ds 1^2 + 8^2 + 8^2 + 1^2\) \(=\) \(\ds 1 + 64 + 64 + 1\)
\(\ds \) \(=\) \(\ds 130\)
\(\ds \leadsto \ \ \) \(\ds 1^2 + 3^2 + 0^2\) \(=\) \(\ds 1 + 9 + 0\)
\(\ds \) \(=\) \(\ds 10\)
\(\ds \leadsto \ \ \) \(\ds 1^2 + 0^2\) \(=\) \(\ds 1 + 0\)
\(\ds \) \(=\) \(\ds 1\) and so $1881$ is happy


\(\ds \) \(\) \(\ds 1882\)
\(\ds \leadsto \ \ \) \(\ds 1^2 + 8^2 + 8^2 + 2^2\) \(=\) \(\ds 1 + 64 + 64 + 4\)
\(\ds \) \(=\) \(\ds 133\)
\(\ds \leadsto \ \ \) \(\ds 1^2 + 3^2 + 3^2\) \(=\) \(\ds 1 + 9 + 9\)
\(\ds \) \(=\) \(\ds 19\)
\(\ds \leadsto \ \ \) \(\ds 1^2 + 9^2\) \(=\) \(\ds 1 + 81\)
\(\ds \) \(=\) \(\ds 82\)
\(\ds \leadsto \ \ \) \(\ds 8^2 + 2^2\) \(=\) \(\ds 64 + 4\)
\(\ds \) \(=\) \(\ds 68\)
\(\ds \leadsto \ \ \) \(\ds 6^2 + 8^2\) \(=\) \(\ds 36 + 64\)
\(\ds \) \(=\) \(\ds 100\)
\(\ds \leadsto \ \ \) \(\ds 1^2 + 0^2 + 0^2\) \(=\) \(\ds 1 + 0 + 0\)
\(\ds \) \(=\) \(\ds 1\) and so $1882$ is happy




Sources