User:Leigh.Samphier/Matroids/Equivalence of Definitions of Matroid Base Axioms/Axiom B1 Iff Axiom B4

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $S$ be a finite set.

Let $\mathscr B$ be a non-empty set of subsets of $S$.


The following definitions for the Matroid Base Axioms are equivalent:

Axiom $(\text B 1)$

\((\text B 1)\)   $:$     \(\ds \forall B_1, B_2 \in \mathscr B:\) \(\ds x \in B_1 \setminus B_2 \implies \exists y \in B_2 \setminus B_1 : \paren {B_1 \setminus \set x} \cup \set y \in \mathscr B \)      

Axiom $(\text B 4)$

\((\text B 4)\)   $:$     \(\ds \forall B_1, B_2 \in \mathscr B:\) \(\ds x \in B_1 \setminus B_2 \implies \exists y \in B_2 \setminus B_1 : \paren {B_1 \setminus \set x} \cup \set y, \paren {B_2 \setminus \set y} \cup \set x \in \mathscr B \)      


Proof

Necessary Condition

Let $\mathscr B$ satisfy the base axiom:

\((\text B 1)\)   $:$     \(\ds \forall B_1, B_2 \in \mathscr B:\) \(\ds x \in B_1 \setminus B_2 \implies \exists y \in B_2 \setminus B_1 : \paren {B_1 \setminus \set x} \cup \set y \in \mathscr B \)      


From Set of Matroid Bases iff Axiom $( \text B 1)$:

there exists a matroid $M = \struct{S, \mathscr I}$ such that $\mathscr B$ is the set of bases of $M$.


Let $B_1, B_2 \in \mathscr B$.

Let $x \in B_1 \setminus B_2$.


From Matroid Base Union External Element has Fundamental Circuit:

there exists a fundamental circuit $\map C {x, B_2}$ of $M$ such that $x \in \map C {x, B_2} \subseteq B_2 \cup \set x$

By definition of set intersection:

$x \in B_1 \cap \map C {x, B_2}$

From Element of Matroid Base and Circuit has Substitute:

$\exists y \in \map C {x, B_2} \setminus B_1 : \paren{B_1 \setminus \set x} \cup \set y \in \mathscr B$

We have:

\(\ds y\) \(\in\) \(\ds \map C {x, B_2} \setminus B_1\)
\(\ds \) \(\subseteq\) \(\ds \map C {x, B_2} \setminus \set x\) Set Difference with Subset is Superset of Set Difference
\(\ds \) \(\subseteq\) \(\ds \paren{B_2 \cup \set x} \setminus \set x\) Set Difference over Subset
\(\ds \) \(\subseteq\) \(\ds B_2 \setminus \set x\) Set Difference with Union is Set Difference
\(\ds \) \(\subseteq\) \(\ds B_2\) Set Difference is Subset

From Matroid Base Substitution From Fundamental Circuit:

$\paren{B_2 \setminus \set y} \cup \set x \in \mathscr B$


It follows that $\mathscr B$ satisfies the base axiom:

\((\text B 4)\)   $:$     \(\ds \forall B_1, B_2 \in \mathscr B:\) \(\ds x \in B_1 \setminus B_2 \implies \exists y \in B_2 \setminus B_1 : \paren {B_1 \setminus \set x} \cup \set y, \paren {B_2 \setminus \set y} \cup \set x \in \mathscr B \)      


Sufficient Condition

Follows immediately from Axiom $(\text B 4)$ and Axiom $(\text B 1)$.

$\blacksquare$