User:Leigh.Samphier/Matroids/Equivalence of Definitions of Matroid Base Axioms/Formulation 1 Iff Formulation 7

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $S$ be a finite set.

Let $\mathscr B$ be a non-empty set of subsets of $S$.


Then:

$\mathscr B$ satisfies formulation $1$ of base axiom:
\((\text B 1)\)   $:$     \(\ds \forall B_1, B_2 \in \mathscr B:\) \(\ds x \in B_1 \setminus B_2 \implies \exists y \in B_2 \setminus B_1 : \paren {B_1 \setminus \set x} \cup \set y \in \mathscr B \)      


if and only if

$\mathscr B$ satisfies formulation $7$ of base axiom:
\((\text B 7)\)   $:$     \(\ds \forall B_1, B_2 \in \mathscr B:\) \(\ds \exists \text{ a bijection } \pi : B_1 \to B_2 : \forall x \in B_1 : \paren {B_2 \setminus \set {\map \pi x} } \cup \set x \in \mathscr B \)      


Proof

Necessary Condition

Follows immediately from:

$\Box$

Sufficient Condition

From Formulation 3 Iff Formulation 7:

$\mathscr B$ satisfies formulation $7$ of base axiom:
\((\text B 7)\)   $:$     \(\ds \forall B_1, B_2 \in \mathscr B:\) \(\ds \exists \text{ a bijection } \pi : B_1 \to B_2 : \forall x \in B_1 : \paren {B_2 \setminus \set {\map \pi x} } \cup \set x \in \mathscr B \)      

if and only if

$\mathscr B$ satisfies formulation $3$ of base axiom:
\((\text B 3)\)   $:$     \(\ds \forall B_1, B_2 \in \mathscr B:\) \(\ds \exists \text{ a bijection } \pi : B_1 \to B_2 : \forall x \in B_1 : \paren {B_1 \setminus \set x } \cup \set {\map \pi x} \in \mathscr B \)      


By choosing $y = \map \pi x$ in formulation $3$, formulation $1$ follows immediately.

$\blacksquare$