User:Leigh.Samphier/Topology/Composite Localic Mapping is Localic Mapping

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $L_1 = \struct{S_1, \preceq_1}, L_2 = \struct{S_2, \preceq_2}$ and $L_3 = \struct{S_3, \preceq_3}$ be locales.

Let $f_1 : L_1 \to L_2$ and $f_2 : L_2 \to L_3$ be localic mappings.


Then:

the composite $f_2 \circ f_1 : L_1 \to L_3$ is a localic mapping.

Proof

By definition of a localic mapping:

$f_1, f_2$ are the upper adjoint of Galois connections $\tuple{f_1, d_1}, \tuple{f_2, d_2}$ respectively

where $d_1 : L_2 \to L_1$ and $d_2 : L_3 \to L_2$ are frame homomorphsims.


From Composite Frame Homomorphism is Frame Homomorphism:

$d_1 \circ d_2 : L_3 \to L_2$ is a frame homomorphsims


From Composition of Galois Connections is Galois Connection:

$\tuple {f_2 \circ f_1, d_1 \circ d_2}$ is a Galois connection


Hence:

$f_2 \circ f_1$ is the upper adjoint of a Galois connection

From User:Leigh.Samphier/Topology/Upper Adjoint of Frame Homomorphism is Localic Mapping:

$f_2 \circ f_1$ is a localic mapping

$\blacksquare$

Sources