Variance of Logistic Distribution/Lemma 3
Jump to navigation
Jump to search
Lemma for Variance of Logistic Distribution
- $\ds \int_{\to 0}^{\to 1} \map \ln u \map \ln {1 - u} \rd u = 2 - \dfrac {\pi^2} 6$
Proof
From Corollary to Power Series Expansion for Logarithm of 1 + x we have:
- $\ds \ln \paren {1 - x} = -\sum_{n \mathop = 1}^\infty \dfrac {x^n} n$
Therefore:
\(\ds \int_{\to 0}^{\to 1} \map \ln u \map \ln {1 - u} \rd u\) | \(=\) | \(\ds \int_{\to 0}^{\to 1} \map \ln u \paren {-\sum_{n \mathop = 1}^\infty \dfrac {u^n} n} \rd u\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds -\sum_{n \mathop = 1}^\infty \dfrac 1 n \int_{\to 0}^{\to 1} u^n \map \ln u \rd u\) | Fubini's Theorem | |||||||||||
\(\ds \) | \(=\) | \(\ds -\sum_{n \mathop = 1}^\infty \dfrac 1 n \bigintlimits {\dfrac {u^{n + 1} } {n + 1} \paren {\ln u - \dfrac 1 {n + 1} } } 0 1\) | Primitive of $u^n \ln u$ | |||||||||||
\(\ds \) | \(=\) | \(\ds -\sum_{n \mathop = 1}^\infty \dfrac 1 n \frac 1 {n + 1} \paren {0 - \frac 1 {n + 1} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty \dfrac 1 n \dfrac 1 {\paren {n + 1}^2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty \dfrac 1 n - \sum_{n \mathop = 1}^\infty \dfrac 1 {\paren {n + 1} } - \sum_{n \mathop = 1}^\infty \dfrac 1 {\paren {n + 1}^2}\) | Partial Fractions Expansion of $\dfrac 1 {x \paren {x + 1}^2}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty \dfrac 1 {n \paren {n + 1} } - \paren {\sum_{n \mathop = 1}^\infty \dfrac 1 {n^2} - 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1 - \paren {\dfrac {\pi^2} 6 - 1}\) | Sum of Sequence of Reciprocals of Triangular Numbers and Basel Problem | |||||||||||
\(\ds \) | \(=\) | \(\ds 2 - \dfrac {\pi^2} 6\) |
$\blacksquare$