Vector Addition on Normed Vector Space is Continuous
Theorem
Let $\struct {X, \norm {\, \cdot \,}_X }$ be a normed vector space.
Let $\struct {X \times X, \norm {\, \cdot \,}_P }$ be the direct product of $X$ and $X$ with the direct product norm $\norm {\, \cdot \,}_P$.
Let $+_{\scriptscriptstyle X} : X \times X \to X$ be the vector addition defined on $X$.
Then $+_{\scriptscriptstyle X} : X \times X \to X$ is a continuous mapping.
Proof
Let $x_0, y_0 \in X$.
Let $\epsilon \in \R_{>0}$.
For $a, b \in X$, let $a-_{\scriptscriptstyle X} b$ denote the sum $a +_{\scriptscriptstyle X} \paren { -b }$, where $-b$ is the inverse vector of $b$ in $X$.
To show that $+_{\scriptscriptstyle X}$ is continuous, let $x, y \in X$ such that $\norm { x_0 -_{\scriptscriptstyle X} x }_X < \dfrac \epsilon 2$, and $\norm { y_0 -_{\scriptscriptstyle X} y }_X < \dfrac \epsilon 2$.
By definition of direct product norm, it follows that:
- $\norm { \tuple {x_0,y_0} -_{\scriptscriptstyle {X \times X} } \tuple {x,y} }_P = \map \max {\norm {x_0 -_{\scriptscriptstyle X} x}_X, \norm {y_0 -_{\scriptscriptstyle X} y}_X } < \dfrac \epsilon 2$
To show that $+_{\scriptscriptstyle X}$ is continuous at $\tuple {x_0, y_0}$, we calculate:
\(\ds \norm { \paren {x_0 +_{\scriptscriptstyle X} y_0} -_{\scriptscriptstyle X} \paren { x +_{\scriptscriptstyle X} y } }_X\) | \(=\) | \(\ds \norm { \paren {x_0 +_{\scriptscriptstyle X} y_0} -_{\scriptscriptstyle X} x -_{\scriptscriptstyle X} y }_X\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \norm { x_0 -_{\scriptscriptstyle X} x +_{\scriptscriptstyle X} y_0 -_{\scriptscriptstyle X} y }_X\) | Vector Space Axiom $(\text V 1)$: Commutativity and Vector Space Axiom $(\text V 2)$: Associativity | |||||||||||
\(\ds \) | \(\le\) | \(\ds \norm { x_0 -_{\scriptscriptstyle X} x }_X + \norm { y_0 -_{\scriptscriptstyle X} y }_X\) | Norm Axiom $\text N 3$: Triangle Inequality | |||||||||||
\(\ds \) | \(<\) | \(\ds \dfrac \epsilon 2 + \dfrac \epsilon 2\) | by assumption | |||||||||||
\(\ds \) | \(=\) | \(\ds \epsilon\) |
It follows that $+_{\scriptscriptstyle X}$ is continuous from $X \times X$ to $X$.
$\blacksquare$
Sources
- 1997: Reinhold Meise and Dietmar Vogt: Introduction to Functional Analysis: $\S 5$: Normed Spaces