Werner Formulas/Hyperbolic Sine by Hyperbolic Sine/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$\sinh x \sinh y = \dfrac {\map \cosh {x + y} - \map \cosh {x - y} } 2$


Proof

\(\ds \) \(\) \(\ds \frac {\map \cosh {x + y} - \map \cosh {x - y} } 2\)
\(\ds \) \(=\) \(\ds \frac {\paren {\cosh x \cosh y + \sinh x \sinh y} - \map \cosh {x - y} } 2\) Hyperbolic Cosine of Sum
\(\ds \) \(=\) \(\ds \frac {\paren {\cosh x \cosh y + \sinh x \sinh y} - \paren {\cosh x \cosh y - \sinh x \sinh y} } 2\) Hyperbolic Cosine of Difference
\(\ds \) \(=\) \(\ds \frac {2 \sinh x \sinh y} 2\)
\(\ds \) \(=\) \(\ds \sinh x \sinh y\)

$\blacksquare$