Werner Formulas/Hyperbolic Sine by Hyperbolic Sine/Proof 1
Jump to navigation
Jump to search
Theorem
- $\sinh x \sinh y = \dfrac {\map \cosh {x + y} - \map \cosh {x - y} } 2$
Proof
\(\ds \) | \(\) | \(\ds \frac {\map \cosh {x + y} - \map \cosh {x - y} } 2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\paren {\cosh x \cosh y + \sinh x \sinh y} - \map \cosh {x - y} } 2\) | Hyperbolic Cosine of Sum | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\paren {\cosh x \cosh y + \sinh x \sinh y} - \paren {\cosh x \cosh y - \sinh x \sinh y} } 2\) | Hyperbolic Cosine of Difference | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {2 \sinh x \sinh y} 2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sinh x \sinh y\) |
$\blacksquare$