Werner Formulas/Hyperbolic Sine by Hyperbolic Sine/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\sinh x \sinh y = \dfrac {\map \cosh {x + y} - \map \cosh {x - y} } 2$


Proof

\(\ds \sinh x \sinh y\) \(=\) \(\ds \frac {e^x - e^{-x} } 2 \frac {e^y - e^{-y} } 2\) Definition of Hyperbolic Sine
\(\ds \) \(=\) \(\ds \frac {e^{x + y} - e^{x - y} - e^{-x + y} + e^{-x - y} } 4\) simplifying
\(\ds \) \(=\) \(\ds \frac 1 2 \paren {\dfrac {e^{x + y} + e^{-\paren {x + y} } } 2 - \frac {e^{x - y} + e^{-\paren {x - y} } } 2}\) rearranging
\(\ds \) \(=\) \(\ds \frac {\cosh \paren {x + y} - \cosh \paren {x - y} } 2\) Definition of Hyperbolic Cosine

$\blacksquare$