Werner Formulas/Hyperbolic Sine by Hyperbolic Sine/Proof 3

From ProofWiki
Jump to navigation Jump to search

Theorem

$\sinh x \sinh y = \dfrac {\map \cosh {x + y} - \map \cosh {x - y} } 2$


Proof

\(\ds \sinh x \sinh y\) \(=\) \(\ds i^2 \map \sin {\frac x i} \map \sin {\frac y i}\) Sine in terms of Hyperbolic Sine
\(\ds \) \(=\) \(\ds -\map \sin {\frac x i} \map \sin {\frac y i}\) $i^2 = -1$
\(\ds \) \(=\) \(\ds -\frac {\map \cos {\frac x i - \frac y i} - \map \cos {\frac x i + \frac y i} } 2\) Werner Formula for Sine by Sine
\(\ds \) \(=\) \(\ds \frac {\map \cos {\frac x i + \frac y i} - \map \cos {\frac x i - \frac y i} } 2\) simplifying
\(\ds \) \(=\) \(\ds \frac {\map \cosh {x + y} - \map \cosh {x - y} } 2\) Cosine in terms of Hyperbolic Cosine

$\blacksquare$