Zero Complement is Not Empty

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {S, \circ, \preceq}$ be a naturally ordered semigroup.

Let $S^*$ be the zero complement of $S$.


Then $S^*$ is not empty.


Proof

From axiom $(\text {NO} 4)$, we have:

$\exists m, n \in S: m \ne n$

That is, there are at least two distinct elements in $S$.

Therefore, there must be at least one element in $S^* = S \setminus \set 0$.


So:

$S^* = S \setminus \set 0 \ne \O$

$\blacksquare$


Sources