# Zeroes of Sine and Cosine

Jump to navigation
Jump to search

## Theorem

- $(1): \quad \forall n \in \Z: x = \paren {n + \dfrac 1 2} \pi \implies \cos x = 0$
- $(2): \quad \forall n \in \Z: x = n \pi \implies \sin x = 0$

## Proof

From Sine and Cosine are Periodic on Reals: Corollary:

$\cos x$ is:

- strictly positive on the interval $\openint {-\dfrac \pi 2} {\dfrac \pi 2}$

and:

- strictly negative on the interval $\openint {\dfrac \pi 2} {\dfrac {3 \pi} 2}$

$\sin x$ is:

- strictly positive on the interval $\openint 0 \pi$

and:

- strictly negative on the interval $\openint \pi {2 \pi}$

The result follows directly from Sine and Cosine are Periodic on Reals.

$\blacksquare$