110

From ProofWiki
Jump to navigation Jump to search

Previous  ... Next

Number

$110$ (one hundred and ten) is:

$2 \times 5 \times 11$


The $8$th sphenic number after $30$, $42$, $66$, $70$, $78$, $102$, $105$:
$110 = 2 \times 5 \times 11$


The $3$rd positive integer after $1$, $7$ the sum of whose divisors is a cube:
$\sigma \left({110}\right) = 216 = 6^3$
It is also the $2$nd of those positive integer after $1$ the count of whose divisors is also a cube:
$\tau \left({110}\right) = 8 = 2^3$


The $21$st positive integer $n$ such that no factorial of an integer can end with $n$ zeroes.


Also see


Sources