12 times Divisor Sum of 12 equals 14 times Divisor Sum of 14

From ProofWiki
Jump to navigation Jump to search

Theorem

$x = 12$ and $y = 14$ are solutions to the indeterminate equation:

$x \, \map {\sigma_1} x = y \, \map {\sigma_1} y$

where $\sigma_1$ denotes the divisor sum function.


Proof

\(\ds 12 \, \map {\sigma_1} {12}\) \(=\) \(\ds 12 \times 28\) $\sigma_1$ of $12$
\(\ds \) \(=\) \(\ds 12 \times 2 \times 14\)
\(\ds \) \(=\) \(\ds 14 \times 24\)
\(\ds \) \(=\) \(\ds 14 \, \map {\sigma_1} {14}\) $\sigma_1$ of $14$

$\blacksquare$


Sources