146

From ProofWiki
Jump to navigation Jump to search

Previous  ... Next

Number

$146$ (one hundred and forty-six) is:

$2 \times 73$


The $2$nd term of the $3$rd $5$-tuple of consecutive integers have the property that they are not values of the $\sigma$ function $\map \sigma n$ for any $n$:
$\tuple {145, 146, 147, 148, 149}$


The $7$th of the $17$ positive integers for which the value of the Euler $\phi$ function is $72$:
$73$, $91$, $95$, $111$, $117$, $135$, $146$, $148$, $152$, $182$, $190$, $216$, $222$, $228$, $234$, $252$, $270$


The $8$th untouchable number after $2$, $5$, $52$, $88$, $96$, $120$, $124$.


The $13$th noncototient after $10$, $26$, $34$, $50$, $52$, $58$, $86$, $100$, $116$, $122$, $130$, $134$:
$\nexists m \in \Z_{>0}: m - \map \phi m = 146$
where $\map \phi m$ denotes the Euler $\phi$ function


The $19$th nontotient after $14$, $26$, $34$, $38$, $50$, $62$, $68$, $74$, $76$, $86$, $90$, $94$, $98$, $114$, $118$, $122$, $124$, $134$, $142$:
$\nexists m \in \Z_{>0}: \map \phi m = 146$
where $\map \phi m$ denotes the Euler $\phi$ function


Also see