2601 as Sum of 3 Squares in 12 Different Ways
Jump to navigation
Jump to search
Theorem
$2601$ can be expressed as the sum of $3$ squares in $12$ different ways.
Proof
\(\ds 2601\) | \(=\) | \(\ds 51^2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1^2 + 10^2 + 50^2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 2^2 + 14^2 + 49^2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 10^2 + 10^2 + 49^2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 14^2 + 14^2 + 47^2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1^2 + 22^2 + 46^2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 14^2 + 17^2 + 46^2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1^2 + 34^2 + 38^2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 14^2 + 31^2 + 38^2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 3^2 + 36^2 + 36^2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 24^2 + 27^2 + 36^2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 17^2 + 34^2 + 34^2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 22^2 + 31^2 + 34^2\) |
That there are no more can be determined by exhaustion.
$\blacksquare$
Sources
- 1989: John M. Howell: Problems and Conjectures: $\text Q 1692$. Three Squares (J. Recr. Math. Vol. 21, no. 1: p. 68)
- 1990: Solutions to Problems and Conjectures: $\text Q 1692$. Three Squares (J. Recr. Math. Vol. 22, no. 1: pp. 74 – 76)
- 1997: David Wells: Curious and Interesting Numbers (2nd ed.) ... (previous) ... (next): $2601$