86
Jump to navigation
Jump to search
Number
$86$ (eighty-six) is:
- $2 \times 43$
- The $7$th noncototient after $10$, $26$, $34$, $50$, $52$, $58$:
- $\nexists m \in \Z_{>0}: m - \map \phi m = 86$
- where $\phi \left({m}\right)$ denotes the Euler $\phi$ function
- The $10$th nontotient after $14$, $26$, $34$, $38$, $50$, $62$, $68$, $74$, $76$:
- $\nexists m \in \Z_{>0}: \map \phi m = 86$
- where $\map \phi m$ denotes the Euler $\phi$ function
- The $16$th happy number after $1$, $7$, $10$, $13$, $19$, $23$, $28$, $31$, $32$, $44$, $49$, $68$, $70$, $79$, $82$:
- $86 \to 8^2 + 6^2 = 64 + 36 = 100 \to 1^2 + 0^2 + 0^2 = 1$
- The $28$th semiprime:
- $86 = 2 \times 43$
- The $36$th integer $n$, and believed to be the largest, such that $2^n$ contains no zero in its decimal representation:
- $2^{86} = 77 \, 371 \, 252 \, 455 \, 336 \, 267 \, 181 \, 195 \, 264$
Also see
- Previous ... Next: Noncototient
- Previous ... Next: Nontotient
- Previous: Powers of 2 with no Zero in Decimal Representation
- Previous ... Next: Happy Number
- Previous ... Next: Semiprime Number
Sources
- 1997: David Wells: Curious and Interesting Numbers (2nd ed.) ... (previous) ... (next): $86$