Integers for which Divisor Sum of Phi equals Divisor Sum

From ProofWiki
Jump to navigation Jump to search

Theorem

The following positive integers have the property that the divisor sum of their Euler $\phi$ value equals their divisor sum:

$\map {\sigma_1} {\map \phi n} = \map {\sigma_1} n$
$1, 87, 362, 1257, 1798, 5002, 9374, \ldots$

This sequence is A033631 in the On-Line Encyclopedia of Integer Sequences (N. J. A. Sloane (Ed.), 2008).


Proof

\(\ds \map {\sigma_1} {\map \phi 1}\) \(=\) \(\ds \map {\sigma_1} 1\) $\phi$ of $1$
\(\ds \) \(=\) \(\ds 1\) $\sigma_1$ of $1$


\(\ds \map {\sigma_1} {\map \phi {87} }\) \(=\) \(\ds \map {\sigma_1} {56}\) $\phi$ of $87$
\(\ds \) \(=\) \(\ds 120\) $\sigma_1$ of $56$
\(\ds \) \(=\) \(\ds \map {\sigma_1} {87}\) $\sigma_1$ of $87$


\(\ds \map {\sigma_1} {\map \phi {362} }\) \(=\) \(\ds \map {\sigma_1} {180}\) $\phi$ of $362$
\(\ds \) \(=\) \(\ds 546\) $\sigma_1$ of $180$
\(\ds \) \(=\) \(\ds \map {\sigma_1} {362}\) $\sigma_1$ of $362$


\(\ds \map {\sigma_1} {\map \phi {1257} }\) \(=\) \(\ds \map {\sigma_1} {836}\) $\phi$ of $1257$
\(\ds \) \(=\) \(\ds 1680\) $\sigma_1$ of $836$
\(\ds \) \(=\) \(\ds \map {\sigma_1} {1257}\) $\sigma_1$ of $1257$


\(\ds \map {\sigma_1} {\map \phi {1798} }\) \(=\) \(\ds \map {\sigma_1} {840}\) $\phi$ of $1798$
\(\ds \) \(=\) \(\ds 2880\) $\sigma_1$ of $840$
\(\ds \) \(=\) \(\ds \map {\sigma_1} {1798}\) $\sigma_1$ of $1798$


\(\ds \map {\sigma_1} {\map \phi {5002} }\) \(=\) \(\ds \map {\sigma_1} {2400}\) $\phi$ of $5002$
\(\ds \) \(=\) \(\ds 7812\) $\sigma_1$ of $2400$
\(\ds \) \(=\) \(\ds \map {\sigma_1} {5002}\) $\sigma_1$ of $5002$


\(\ds \map {\sigma_1} {\map \phi {9374} }\) \(=\) \(\ds \map {\sigma_1} {4536}\) $\phi$ of $9374$
\(\ds \) \(=\) \(\ds 14 \, 520\) $\sigma_1$ of $4536$
\(\ds \) \(=\) \(\ds \map {\sigma_1} {9374}\) $\sigma_1$ of $9374$


Sources