Abel's Lemma/Formulation 1
Jump to navigation
Jump to search
Lemma
Let $\sequence a$ and $\sequence b$ be sequences in an arbitrary ring $R$.
Then:
- $\ds \sum_{k \mathop = m}^n a_k \paren {b_{k + 1} - b_k} = a_{n + 1} b_{n + 1} - a_m b_m - \sum_{k \mathop = m}^n \paren {a_{k + 1} - a_k} b_{k + 1}$
Note that although proved for the general ring, this result is usually applied to one of the conventional number fields $\Z, \Q, \R$ and $\C$.
Corollary
- $\ds \sum_{k \mathop = 1}^n a_k \paren {b_{k + 1} - b_k} = a_{n + 1} b_{n + 1} - a_1 b_1 - \sum_{k \mathop = 1}^n \paren {a_{k + 1} - a_k} b_{k + 1}$
Proof
\(\ds \sum_{k \mathop = m}^n a_k \paren {b_{k + 1} - b_k}\) | \(=\) | \(\ds \sum_{k \mathop = m}^n a_k b_{k + 1} - \sum_{k \mathop = m}^n a_k b_k\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = m}^n a_k b_{k + 1} - \paren {a_m b_m + \sum_{k \mathop = m}^n a_{k + 1} b_{k + 1} - a_{n + 1} b_{n + 1} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds a_{n + 1} b_{n + 1} - a_m b_m + \sum_{k \mathop = m}^n a_k b_{k + 1} - \sum_{k \mathop = m}^n a_{k + 1} b_{k + 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds a_{n + 1} b_{n + 1} - a_m b_m - \sum_{k \mathop = m}^n \paren {a_{k + 1} - a_k} b_{k + 1}\) |
$\blacksquare$
Also reported as
Some sources give this as:
- $\ds \sum_{k \mathop = m}^n \paren {a_{k + 1} - a_k} b_k = a_{n + 1} b_{n + 1} - a_m b_m - \sum_{k \mathop = m}^n a_{k + 1} \paren {b_{k + 1} - b_k}$
which is obtained from the main result by interchanging $a$ and $b$.
Others take the upper index to $n - 1$:
- $\ds \sum_{k \mathop = m}^{n - 1} \paren {a_{k + 1} - a_k} b_k = a_n b_n - a_m b_m - \sum_{k \mathop = m}^{n - 1} a_{k + 1} \paren {b_{k + 1} - b_k}$
Also known as
Abel's Lemma is also known as:
- Abel's transformation
- Abel's partial summation formula
- the technique of Summation by Parts.
Source of Name
This entry was named for Niels Henrik Abel.