Absolute Value of Complex Cross Product is Commutative
Jump to navigation
Jump to search
Theorem
Let $z_1$ and $z_2$ be complex numbers.
Let $z_1 \times z_2$ denote the (complex) cross product of $z_1$ and $z_2$.
Then:
- $\size {z_1 \times z_2} = \size {z_2 \times z_1}$
where $\size {\, \cdot \,}$ denotes the absolute value function.
Proof
\(\ds \size {z_2 \times z_1}\) | \(=\) | \(\ds \size {-z_1 \times z_2}\) | Complex Cross Product is Anticommutative | |||||||||||
\(\ds \) | \(=\) | \(\ds \size {z_1 \times z_2}\) | Definition of Absolute Value |
Hence the result.
$\blacksquare$
Examples
Example: $\size {\paren {2 + 5 i} \times \paren {3 - i} } = \size {\paren {3 - i} \times \paren {2 + 5 i} }$
Example: $\size {\paren {2 + 5 i} \times \paren {3 - i} }$
Let:
- $z_1 = 2 + 5 i$
- $z_2 = 3 - i$
Then:
- $\size {z_1 \times z_2} = 17$
Example: $\size {\paren {3 - i} \times \paren {2 + 5 i} }$
Let:
- $z_1 = 3 - i$
- $z_2 = 2 + 5 i$
Then:
- $\size {z_1 \times z_2} = 17$
As can be seen:
- $\size {\paren {2 + 5 i} \times \paren {3 - i} } = \size {\paren {3 - i} \times \paren {2 + 5 i} }$
$\blacksquare$