Absolute Value of Complex Dot Product is Commutative
Jump to navigation
Jump to search
Theorem
Let $z_1$ and $z_2$ be complex numbers.
Let $z_1 \circ z_2$ denote the (complex) dot product of $z_1$ and $z_2$.
Then:
- $\size {z_1 \circ z_2} = \size {z_2 \circ z_1}$
where $\size {\, \cdot \,}$ denotes the absolute value function.
Proof
From Dot Product Operator is Commutative:
- $z_1 \circ z_2 = z_2 \circ z_1$
The result follows trivially.
$\blacksquare$
Examples
Example: $\size {\paren {2 + 5 i} \circ \paren {3 - i} } = \size {\paren {3 - i} \circ \paren {2 + 5 i} }$
Example: $\size {\paren {2 + 5 i} \circ \paren {3 - i} }$
Let:
- $z_1 = 2 + 5 i$
- $z_2 = 3 - i$
Then:
- $\size {z_1 \circ z_2} = 1$
Example: $\size {\paren {3 - i} \circ \paren {2 + 5 i} }$
Let:
- $z_1 = 3 - i$
- $z_2 = 2 + 5 i$
Then:
- $\size {z_1 \circ z_2} = 1$
As can be seen:
- $\size {\paren {2 + 5 i} \circ \paren {3 - i} } = \size {\paren {3 - i} \circ \paren {2 + 5 i} }$
$\blacksquare$