Complex Dot Product/Examples/Size of 2+5i dot 3-i
Jump to navigation
Jump to search
Example of Complex Dot Product
Let:
- $z_1 = 2 + 5 i$
- $z_2 = 3 - i$
Then:
- $\size {z_1 \circ z_2} = 1$
where:
- $\circ$ denotes (complex) dot product
- $\size {\, \cdot \,}$ denotes the absolute value function.
Proof
\(\ds z_1 \circ z_2\) | \(=\) | \(\ds 1\) | Complex Dot Product: $2 + 5 i \circ 3 - i$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \size {z_1 \circ z_2}\) | \(=\) | \(\ds \size 1\) | |||||||||||
\(\ds \) | \(=\) | \(\ds 1\) |
$\blacksquare$
Sources
- 1981: Murray R. Spiegel: Theory and Problems of Complex Variables (SI ed.) ... (previous) ... (next): $1$: Complex Numbers: Supplementary Problems: The Dot and Cross Product: $110 \ \text {(e)}$